If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+26x+50=0
a = 3; b = 26; c = +50;
Δ = b2-4ac
Δ = 262-4·3·50
Δ = 76
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{76}=\sqrt{4*19}=\sqrt{4}*\sqrt{19}=2\sqrt{19}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(26)-2\sqrt{19}}{2*3}=\frac{-26-2\sqrt{19}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(26)+2\sqrt{19}}{2*3}=\frac{-26+2\sqrt{19}}{6} $
| 84=2x-2(x) | | -3/4m-9=27 | | 7y-4=12+3y | | (1/2)=(2/3)x-(7/6) | | x+12=5x-32 | | 3(9-5x-3x)+5(3x+9)=27 | | 81=3.14r^2 | | -4(x+2-3x)=16 | | 155+24x=-193+18x | | 0.6x-0.4(1600-x)=10 | | 6e+4=58 | | 7x+4=-5x+8 | | f2+25f+150f=0 | | 3^2x=5^-x+5 | | -5=m+1-1 | | 6y+4y=40 | | 30=2b-1 | | 4x+8=40−4x | | 56=3x-13(x) | | 7+14=8c-1 | | -40x+30x=5(-10-3x) | | 12/18=10/c | | 5t+18+2t=13-26t-9 | | 6/5=45v | | 2=m2-7 | | 16=-3t-8 | | 6=3+2n+5 | | 0.6x+0.3x=42 | | a−2+3=−2 | | z/4+3=8 | | 8-5t=78 | | 4+7x=8-5x |